Identification	Subject	ENGR 210 Fluid Mechanics, 6 ECTS		
	Department	Mechanical Engineering		
	Program	Undergraduate		
	Term	Fall 2025		
	Instructor	Dr. Mehdi Kiyasatfar		
	E-mail:	mkiyasatfar@khazar.org		
	Phone:			
	Classroom/hours			
	Office hours			
Prerequisites	Dynamics, Differential equations			
Language	English			
Compulsory/Elective	Compulsory			
Course Description	Fluid mechanics is a branch of physics that studies fluids and their behaviors in			
_	response to different forces. This course provides students with an introduction to			
	principal concepts and methods of fluid mechanics.			
Required textbooks	Textbook:			
and course materials	• "Brief Introduction	• "Brief Introduction to Fluid Mechanics" by Donald F. Young, Bruce R. Munson,		
	Theodore H. Okiishi, Wade W. Huebsch-A, Fifth Edition, published by Wiley			
	Publication, 2010.			
	• "Fluid Mechanics with Engineering Applications" by E. John Finnemore and			
	Joseph B. Franzini, 10th. Edition, published by McGraw Hill, 2001			
Course Objective		idents to gain a basic understanding of the properties of fluids		
		them. These knowledge lead to determination of behavior of		
		nditions. Moreover, the course enables students to apply the		
	concepts in a broad range of engineering problems from blood in human body to			
	galaxies. Students will work to formulate the models necessary to study, analyze,			
		tems through the application of these concepts, and to develop		
	the problem-solving skills essential to good engineering practice of fluid mechanics			
	in practical applications. Stress and strain rate descriptions, fluid statics, and use of			
	differential and finite control volume analysis with continuity, momentum, and			
	energy equations, Bernoulli and Euler equations, and incompressible viscous flow			
I	using Naiver-Stokes			
Learning outcomes		npletion of this course, the student will be able:		
	Differentiate between fluids and solids and describe the continuum			
	assumption.			
	Define and apply key fluid properties, including density, specific weight, specific gravity, and viscosity.			
	specific gravity, and viscosity.Explain and apply the principles of surface tension and capillarity.			
	 Explain and apply the principles of surface tension and capillarity. Calculate pressure at a point in a fluid and understand its variation with 			
	depth.	essure at a point in a fluid and understand its variation with		
	Determine the magnitude, direction, and location of the hydrostatic force on			
		plane and curved surfaces.		
		principles of buoyancy and Archimedes' principle to solve		
		volving submerged and floating bodies.		
	_	e between various flow descriptions, such as streamlines, path-		
	lines, and str			
	Apply the Reynolds Transport Theorem to convert between system and			
	control volume formulations for mass, momentum, and energy.			
		ontinuity equation (conservation of mass) to solve problems for		
	_	pressible and compressible flow.		
		ernoulli equation (conservation of energy) to solve a wide range		
		problems along a streamline.		
		ar momentum equation to calculate forces exerted by a fluid on		
	solid objects	s, such as nozzles, bends, and vanes.		

- Differentiate between laminar and turbulent flow and calculate the Reynolds number to determine the flow regime.
- Calculate friction losses in pipes using the Darcy-Weisbach equation and the Moody chart.
- Determine minor losses for pipe fittings and other components.
- Analyze and solve problems for single-pipe systems as well as pipes in series and parallel.

Teaching methods	Lecture		X
	Case analysis and assignments		X
Evaluation	Methods	Date/deadlines	Percentage (%)
	Midterm Exam		25
	Class Participation	At each lesson	5
	Assignment	During the semester	20
	Quiz	During the semester	10
	Final Exam		40
	Total		100

Policy

Ethics

Copy of other students' work is highly discouraged. All assignments must be handled by the student himself. This is a university policy and violators will be reprimanded accordingly.

Preparation for class

The structure of this course demands your individual effort outside the classroom for extra practice of many problems within the textbook. After each session, every student needs to put sufficient time to practice and finish the assignments by the predetermined date.

• Withdrawal (pass/fail)

This course strictly follows grading policy of the School of Science and Engineering. Thus, a student is normally expected to achieve a mark of at least 60% to pass. In case of failure, he/she will be required to repeat the course the following term or year.

Cheating/plagiarism

Cheating or other plagiarism in handling the assignments, Mid-term and Final Examinations will lead to course failure. In this case, the student will automatically get zero (0), without any considerations.

Professional behavior guidelines

The students shall behave in a way to create favorable academic and professional environment during the class hours. Unauthorized discussions and unethical behavior are strictly discouraged.

Attendance

Students who attend the whole classes will get 5 marks. for three absence student loses 1 mark.

Ouiz

There will be quizzes for checking understanding of content during class. We are not going to give make-up for a missing quiz due to any reason other than medical report.

Assignment

There will be a homework assignment for every chapter composed of exercises and problems.

Tentative Schedule				
Week	Topics	Textbook/Assignments		
1	Introduction to Fluid Mechanics	Chapter 1		
2	Fluid Properties; Dimensions and Units	Chapter 1		
3	Viscosity and Compressibility, Surface Tension	Chapter 1		
4	Introduction to Fluid Statics	Chapter 2		
5	Pressure calculation at a point, Pressure variations and measurements	Chapter 2		
6	Hydrostatic force calculations	Chapter 2		
7	Hydrostatic force calculations	Chapter 2		
8	Review Midterm Exams			
9	Introduction to Fluid Kinematics	Chapter 3		
10	Velocity and acceleration field	Chapter 3		
11	Bernoulli equation	Chapter 4		
12	Introduction to Control Volume analysis	Chapter 4		
13	Reynolds Transport Theorem and conservation of mass	Chapter 5, 6		
14	Conservation of Momentum and Energy	Chapter 5, 6		
15	Fluid mechanics in Industrial applications			
16	Final Exam			

This syllabus is a guide for the course and any modifications to it will be announced in advance.